$$$\sec^{5}{\left(u \right)}$$$の積分

この計算機は、手順を示しながら$$$\sec^{5}{\left(u \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \sec^{5}{\left(u \right)}\, du$$$ を求めよ。

解答

積分 $$$\int{\sec^{5}{\left(u \right)} d u}$$$ には、部分積分法$$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$を用いてください。

$$$\operatorname{c}=\sec^{3}{\left(u \right)}$$$$$$\operatorname{dv}=\sec^{2}{\left(u \right)} du$$$ とする。

したがって、$$$\operatorname{dc}=\left(\sec^{3}{\left(u \right)}\right)^{\prime }du=3 \tan{\left(u \right)} \sec^{3}{\left(u \right)} du$$$(手順は»を参照)および$$$\operatorname{v}=\int{\sec^{2}{\left(u \right)} d u}=\tan{\left(u \right)}$$$(手順は»を参照)。

したがって、

$$\int{\sec^{5}{\left(u \right)} d u}=\sec^{3}{\left(u \right)} \cdot \tan{\left(u \right)}-\int{\tan{\left(u \right)} \cdot 3 \tan{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - \int{3 \tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}$$

定数をくくり出す:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - \int{3 \tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}$$

公式$$$\tan^{2}{\left(u \right)} = \sec^{2}{\left(u \right)} - 1$$$を適用します:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec^{3}{\left(u \right)} d u}$$

展開せよ:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{5}{\left(u \right)} - \sec^{3}{\left(u \right)}\right)d u}$$

差の積分は積分の差に等しい:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{5}{\left(u \right)} - \sec^{3}{\left(u \right)}\right)d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} + 3 \int{\sec^{3}{\left(u \right)} d u} - 3 \int{\sec^{5}{\left(u \right)} d u}$$

したがって、積分に関する次の簡単な線形方程式が得られます。

$${\color{red}{\int{\sec^{5}{\left(u \right)} d u}}}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} + 3 \int{\sec^{3}{\left(u \right)} d u} - 3 {\color{red}{\int{\sec^{5}{\left(u \right)} d u}}}$$

これを解くと、次のようになる。

$$\int{\sec^{5}{\left(u \right)} d u}=\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \int{\sec^{3}{\left(u \right)} d u}}{4}$$

積分 $$$\int{\sec^{3}{\left(u \right)} d u}$$$ には、部分積分法$$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$を用いてください。

$$$\operatorname{c}=\sec{\left(u \right)}$$$$$$\operatorname{dv}=\sec^{2}{\left(u \right)} du$$$ とする。

したがって、$$$\operatorname{dc}=\left(\sec{\left(u \right)}\right)^{\prime }du=\tan{\left(u \right)} \sec{\left(u \right)} du$$$(手順は»を参照)および$$$\operatorname{v}=\int{\sec^{2}{\left(u \right)} d u}=\tan{\left(u \right)}$$$(手順は»を参照)。

積分は次のようになります

$$\int{\sec^{3}{\left(u \right)} d u}=\sec{\left(u \right)} \cdot \tan{\left(u \right)}-\int{\tan{\left(u \right)} \cdot \tan{\left(u \right)} \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\tan^{2}{\left(u \right)} \sec{\left(u \right)} d u}$$

公式$$$\tan^{2}{\left(u \right)} = \sec^{2}{\left(u \right)} - 1$$$を適用します:

$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\tan^{2}{\left(u \right)} \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec{\left(u \right)} d u}$$

展開せよ:

$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{3}{\left(u \right)} - \sec{\left(u \right)}\right)d u}$$

差の積分は積分の差に等しい:

$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{3}{\left(u \right)} - \sec{\left(u \right)}\right)d u}=\tan{\left(u \right)} \sec{\left(u \right)} + \int{\sec{\left(u \right)} d u} - \int{\sec^{3}{\left(u \right)} d u}$$

したがって、積分に関する次の簡単な線形方程式が得られます。

$${\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}=\tan{\left(u \right)} \sec{\left(u \right)} + \int{\sec{\left(u \right)} d u} - {\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}$$

これを解くと、次のようになる。

$$\int{\sec^{3}{\left(u \right)} d u}=\frac{\tan{\left(u \right)} \sec{\left(u \right)}}{2} + \frac{\int{\sec{\left(u \right)} d u}}{2}$$

したがって、

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 {\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}}{4} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\tan{\left(u \right)} \sec{\left(u \right)}}{2} + \frac{\int{\sec{\left(u \right)} d u}}{2}\right)}}}{4}$$

正割関数を$$$\sec\left(u\right)=\frac{1}{\cos\left(u\right)}$$$として書き換える:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\sec{\left(u \right)} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{8}$$

公式 $$$\cos\left(u\right)=\sin\left(u + \frac{\pi}{2}\right)$$$ を用いて余弦を正弦で表し、次に2倍角の公式 $$$\sin\left(u\right)=2\sin\left(\frac{u}{2}\right)\cos\left(\frac{u}{2}\right)$$$ を用いて正弦を書き換えなさい。:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8}$$

分子と分母に$$$\sec^2\left(\frac{u}{2} + \frac{\pi}{4} \right)$$$を掛ける:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8}$$

$$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$ とする。

すると $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$(手順は»で確認できます)、$$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$ となります。

この積分は次のように書き換えられる

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{8}$$

$$$\frac{1}{v}$$$ の不定積分は $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ です:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{8}$$

次のことを思い出してください $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:

$$\frac{3 \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} = \frac{3 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}$$

したがって、

$$\int{\sec^{5}{\left(u \right)} d u} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}$$

積分定数を加える:

$$\int{\sec^{5}{\left(u \right)} d u} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}+C$$

解答

$$$\int \sec^{5}{\left(u \right)}\, du = \left(\frac{3 \ln\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right|\right)}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}\right) + C$$$A


Please try a new game Rotatly