Funktion $$$\sec^{5}{\left(u \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \sec^{5}{\left(u \right)}\, du$$$.
Ratkaisu
Integraalin $$$\int{\sec^{5}{\left(u \right)} d u}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.
Olkoon $$$\operatorname{m}=\sec^{3}{\left(u \right)}$$$ ja $$$\operatorname{dv}=\sec^{2}{\left(u \right)} du$$$.
Tällöin $$$\operatorname{dm}=\left(\sec^{3}{\left(u \right)}\right)^{\prime }du=3 \tan{\left(u \right)} \sec^{3}{\left(u \right)} du$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{\sec^{2}{\left(u \right)} d u}=\tan{\left(u \right)}$$$ (vaiheet ovat nähtävissä »).
Näin ollen,
$$\int{\sec^{5}{\left(u \right)} d u}=\sec^{3}{\left(u \right)} \cdot \tan{\left(u \right)}-\int{\tan{\left(u \right)} \cdot 3 \tan{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - \int{3 \tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}$$
Vedä vakio ulos:
$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - \int{3 \tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}$$
Sovella kaavaa $$$\tan^{2}{\left(u \right)} = \sec^{2}{\left(u \right)} - 1$$$:
$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec^{3}{\left(u \right)} d u}$$
Laajenna:
$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{5}{\left(u \right)} - \sec^{3}{\left(u \right)}\right)d u}$$
Erotuksen integraali on integraalien erotus:
$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{5}{\left(u \right)} - \sec^{3}{\left(u \right)}\right)d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} + 3 \int{\sec^{3}{\left(u \right)} d u} - 3 \int{\sec^{5}{\left(u \right)} d u}$$
Näin saamme seuraavan yksinkertaisen lineaarisen yhtälön integraalin suhteen:
$${\color{red}{\int{\sec^{5}{\left(u \right)} d u}}}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} + 3 \int{\sec^{3}{\left(u \right)} d u} - 3 {\color{red}{\int{\sec^{5}{\left(u \right)} d u}}}$$
Ratkaisemalla sen saamme, että
$$\int{\sec^{5}{\left(u \right)} d u}=\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \int{\sec^{3}{\left(u \right)} d u}}{4}$$
Integraalin $$$\int{\sec^{3}{\left(u \right)} d u}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.
Olkoon $$$\operatorname{m}=\sec{\left(u \right)}$$$ ja $$$\operatorname{dv}=\sec^{2}{\left(u \right)} du$$$.
Tällöin $$$\operatorname{dm}=\left(\sec{\left(u \right)}\right)^{\prime }du=\tan{\left(u \right)} \sec{\left(u \right)} du$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{\sec^{2}{\left(u \right)} d u}=\tan{\left(u \right)}$$$ (vaiheet ovat nähtävissä »).
Integraali voidaan kirjoittaa muotoon
$$\int{\sec^{3}{\left(u \right)} d u}=\sec{\left(u \right)} \cdot \tan{\left(u \right)}-\int{\tan{\left(u \right)} \cdot \tan{\left(u \right)} \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\tan^{2}{\left(u \right)} \sec{\left(u \right)} d u}$$
Sovella kaavaa $$$\tan^{2}{\left(u \right)} = \sec^{2}{\left(u \right)} - 1$$$:
$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\tan^{2}{\left(u \right)} \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec{\left(u \right)} d u}$$
Laajenna:
$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{3}{\left(u \right)} - \sec{\left(u \right)}\right)d u}$$
Erotuksen integraali on integraalien erotus:
$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{3}{\left(u \right)} - \sec{\left(u \right)}\right)d u}=\tan{\left(u \right)} \sec{\left(u \right)} + \int{\sec{\left(u \right)} d u} - \int{\sec^{3}{\left(u \right)} d u}$$
Näin saamme seuraavan yksinkertaisen lineaarisen yhtälön integraalin suhteen:
$${\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}=\tan{\left(u \right)} \sec{\left(u \right)} + \int{\sec{\left(u \right)} d u} - {\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}$$
Ratkaisemalla sen saamme, että
$$\int{\sec^{3}{\left(u \right)} d u}=\frac{\tan{\left(u \right)} \sec{\left(u \right)}}{2} + \frac{\int{\sec{\left(u \right)} d u}}{2}$$
Näin ollen,
$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 {\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}}{4} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\tan{\left(u \right)} \sec{\left(u \right)}}{2} + \frac{\int{\sec{\left(u \right)} d u}}{2}\right)}}}{4}$$
Kirjoita sekantti uudelleen muodossa $$$\sec\left(u\right)=\frac{1}{\cos\left(u\right)}$$$:
$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\sec{\left(u \right)} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{8}$$
Kirjoita kosini sinin avulla kaavaa $$$\cos\left(u\right)=\sin\left(u + \frac{\pi}{2}\right)$$$ käyttäen ja kirjoita sitten sini uudelleen kaksinkertaisen kulman kaavaa $$$\sin\left(u\right)=2\sin\left(\frac{u}{2}\right)\cos\left(\frac{u}{2}\right)$$$ käyttäen:
$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8}$$
Kerro osoittaja ja nimittäjä luvulla $$$\sec^2\left(\frac{u}{2} + \frac{\pi}{4} \right)$$$:
$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8}$$
Olkoon $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.
Tällöin $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.
Näin ollen,
$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{8}$$
Funktion $$$\frac{1}{v}$$$ integraali on $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{8}$$
Muista, että $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:
$$\frac{3 \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} = \frac{3 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}$$
Näin ollen,
$$\int{\sec^{5}{\left(u \right)} d u} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}$$
Lisää integrointivakio:
$$\int{\sec^{5}{\left(u \right)} d u} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}+C$$
Vastaus
$$$\int \sec^{5}{\left(u \right)}\, du = \left(\frac{3 \ln\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right|\right)}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}\right) + C$$$A