Integral de $$$\sqrt{4 - 4 \sin^{2}{\left(x \right)}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sqrt{4 - 4 \sin^{2}{\left(x \right)}}\, dx$$$.
Solução
Simplifique o integrando:
$${\color{red}{\int{\sqrt{4 - 4 \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{2 \sqrt{1 - \sin^{2}{\left(x \right)}} d x}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \sqrt{1 - \sin^{2}{\left(x \right)}}$$$:
$${\color{red}{\int{2 \sqrt{1 - \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\left(2 \int{\sqrt{1 - \sin^{2}{\left(x \right)}} d x}\right)}}$$
Esta integral (Integral elíptica incompleta de segunda espécie) não possui forma fechada:
$$2 {\color{red}{\int{\sqrt{1 - \sin^{2}{\left(x \right)}} d x}}} = 2 {\color{red}{E\left(x\middle| 1\right)}}$$
Portanto,
$$\int{\sqrt{4 - 4 \sin^{2}{\left(x \right)}} d x} = 2 E\left(x\middle| 1\right)$$
Adicione a constante de integração:
$$\int{\sqrt{4 - 4 \sin^{2}{\left(x \right)}} d x} = 2 E\left(x\middle| 1\right)+C$$
Resposta
$$$\int \sqrt{4 - 4 \sin^{2}{\left(x \right)}}\, dx = 2 E\left(x\middle| 1\right) + C$$$A