Integrale di $$$\sqrt{4 - 4 \sin^{2}{\left(x \right)}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\sqrt{4 - 4 \sin^{2}{\left(x \right)}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \sqrt{4 - 4 \sin^{2}{\left(x \right)}}\, dx$$$.

Soluzione

Semplifica l’integranda:

$${\color{red}{\int{\sqrt{4 - 4 \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{2 \sqrt{1 - \sin^{2}{\left(x \right)}} d x}}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ e $$$f{\left(x \right)} = \sqrt{1 - \sin^{2}{\left(x \right)}}$$$:

$${\color{red}{\int{2 \sqrt{1 - \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\left(2 \int{\sqrt{1 - \sin^{2}{\left(x \right)}} d x}\right)}}$$

Questo integrale (Integrale ellittico incompleto di seconda specie) non ha una forma chiusa:

$$2 {\color{red}{\int{\sqrt{1 - \sin^{2}{\left(x \right)}} d x}}} = 2 {\color{red}{E\left(x\middle| 1\right)}}$$

Pertanto,

$$\int{\sqrt{4 - 4 \sin^{2}{\left(x \right)}} d x} = 2 E\left(x\middle| 1\right)$$

Aggiungi la costante di integrazione:

$$\int{\sqrt{4 - 4 \sin^{2}{\left(x \right)}} d x} = 2 E\left(x\middle| 1\right)+C$$

Risposta

$$$\int \sqrt{4 - 4 \sin^{2}{\left(x \right)}}\, dx = 2 E\left(x\middle| 1\right) + C$$$A


Please try a new game Rotatly