$$$\sqrt{4 - 4 \sin^{2}{\left(x \right)}}$$$の積分

この計算機は、手順を示しながら$$$\sqrt{4 - 4 \sin^{2}{\left(x \right)}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \sqrt{4 - 4 \sin^{2}{\left(x \right)}}\, dx$$$ を求めよ。

解答

被積分関数を簡単化する:

$${\color{red}{\int{\sqrt{4 - 4 \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{2 \sqrt{1 - \sin^{2}{\left(x \right)}} d x}}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$$$$f{\left(x \right)} = \sqrt{1 - \sin^{2}{\left(x \right)}}$$$ に対して適用する:

$${\color{red}{\int{2 \sqrt{1 - \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\left(2 \int{\sqrt{1 - \sin^{2}{\left(x \right)}} d x}\right)}}$$

この積分(第二種不完全楕円積分)には閉形式はありません:

$$2 {\color{red}{\int{\sqrt{1 - \sin^{2}{\left(x \right)}} d x}}} = 2 {\color{red}{E\left(x\middle| 1\right)}}$$

したがって、

$$\int{\sqrt{4 - 4 \sin^{2}{\left(x \right)}} d x} = 2 E\left(x\middle| 1\right)$$

積分定数を加える:

$$\int{\sqrt{4 - 4 \sin^{2}{\left(x \right)}} d x} = 2 E\left(x\middle| 1\right)+C$$

解答

$$$\int \sqrt{4 - 4 \sin^{2}{\left(x \right)}}\, dx = 2 E\left(x\middle| 1\right) + C$$$A


Please try a new game Rotatly