Integraal van $$$z^{2} e^{- z}$$$

De calculator zal de integraal/primitieve functie van $$$z^{2} e^{- z}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int z^{2} e^{- z}\, dz$$$.

Oplossing

Voor de integraal $$$\int{z^{2} e^{- z} d z}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Zij $$$\operatorname{u}=z^{2}$$$ en $$$\operatorname{dv}=e^{- z} dz$$$.

Dan $$$\operatorname{du}=\left(z^{2}\right)^{\prime }dz=2 z dz$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{e^{- z} d z}=- e^{- z}$$$ (de stappen zijn te zien »).

De integraal kan worden herschreven als

$${\color{red}{\int{z^{2} e^{- z} d z}}}={\color{red}{\left(z^{2} \cdot \left(- e^{- z}\right)-\int{\left(- e^{- z}\right) \cdot 2 z d z}\right)}}={\color{red}{\left(- z^{2} e^{- z} - \int{\left(- 2 z e^{- z}\right)d z}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$ toe met $$$c=-2$$$ en $$$f{\left(z \right)} = z e^{- z}$$$:

$$- z^{2} e^{- z} - {\color{red}{\int{\left(- 2 z e^{- z}\right)d z}}} = - z^{2} e^{- z} - {\color{red}{\left(- 2 \int{z e^{- z} d z}\right)}}$$

Voor de integraal $$$\int{z e^{- z} d z}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Zij $$$\operatorname{u}=z$$$ en $$$\operatorname{dv}=e^{- z} dz$$$.

Dan $$$\operatorname{du}=\left(z\right)^{\prime }dz=1 dz$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{e^{- z} d z}=- e^{- z}$$$ (de stappen zijn te zien »).

Dus,

$$- z^{2} e^{- z} + 2 {\color{red}{\int{z e^{- z} d z}}}=- z^{2} e^{- z} + 2 {\color{red}{\left(z \cdot \left(- e^{- z}\right)-\int{\left(- e^{- z}\right) \cdot 1 d z}\right)}}=- z^{2} e^{- z} + 2 {\color{red}{\left(- z e^{- z} - \int{\left(- e^{- z}\right)d z}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$ toe met $$$c=-1$$$ en $$$f{\left(z \right)} = e^{- z}$$$:

$$- z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{\int{\left(- e^{- z}\right)d z}}} = - z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{\left(- \int{e^{- z} d z}\right)}}$$

Zij $$$u=- z$$$.

Dan $$$du=\left(- z\right)^{\prime }dz = - dz$$$ (de stappen zijn te zien »), en dan geldt dat $$$dz = - du$$$.

Dus,

$$- z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\int{e^{- z} d z}}} = - z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = e^{u}$$$:

$$- z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\int{\left(- e^{u}\right)d u}}} = - z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$

De integraal van de exponentiële functie is $$$\int{e^{u} d u} = e^{u}$$$:

$$- z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{\int{e^{u} d u}}} = - z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{e^{u}}}$$

We herinneren eraan dat $$$u=- z$$$:

$$- z^{2} e^{- z} - 2 z e^{- z} - 2 e^{{\color{red}{u}}} = - z^{2} e^{- z} - 2 z e^{- z} - 2 e^{{\color{red}{\left(- z\right)}}}$$

Dus,

$$\int{z^{2} e^{- z} d z} = - z^{2} e^{- z} - 2 z e^{- z} - 2 e^{- z}$$

Vereenvoudig:

$$\int{z^{2} e^{- z} d z} = \left(- z^{2} - 2 z - 2\right) e^{- z}$$

Voeg de integratieconstante toe:

$$\int{z^{2} e^{- z} d z} = \left(- z^{2} - 2 z - 2\right) e^{- z}+C$$

Antwoord

$$$\int z^{2} e^{- z}\, dz = \left(- z^{2} - 2 z - 2\right) e^{- z} + C$$$A


Please try a new game Rotatly