Intégrale de $$$z^{2} e^{- z}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int z^{2} e^{- z}\, dz$$$.
Solution
Pour l’intégrale $$$\int{z^{2} e^{- z} d z}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=z^{2}$$$ et $$$\operatorname{dv}=e^{- z} dz$$$.
Donc $$$\operatorname{du}=\left(z^{2}\right)^{\prime }dz=2 z dz$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{e^{- z} d z}=- e^{- z}$$$ (les étapes peuvent être consultées »).
L’intégrale devient
$${\color{red}{\int{z^{2} e^{- z} d z}}}={\color{red}{\left(z^{2} \cdot \left(- e^{- z}\right)-\int{\left(- e^{- z}\right) \cdot 2 z d z}\right)}}={\color{red}{\left(- z^{2} e^{- z} - \int{\left(- 2 z e^{- z}\right)d z}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$ avec $$$c=-2$$$ et $$$f{\left(z \right)} = z e^{- z}$$$ :
$$- z^{2} e^{- z} - {\color{red}{\int{\left(- 2 z e^{- z}\right)d z}}} = - z^{2} e^{- z} - {\color{red}{\left(- 2 \int{z e^{- z} d z}\right)}}$$
Pour l’intégrale $$$\int{z e^{- z} d z}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=z$$$ et $$$\operatorname{dv}=e^{- z} dz$$$.
Donc $$$\operatorname{du}=\left(z\right)^{\prime }dz=1 dz$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{e^{- z} d z}=- e^{- z}$$$ (les étapes peuvent être consultées »).
Ainsi,
$$- z^{2} e^{- z} + 2 {\color{red}{\int{z e^{- z} d z}}}=- z^{2} e^{- z} + 2 {\color{red}{\left(z \cdot \left(- e^{- z}\right)-\int{\left(- e^{- z}\right) \cdot 1 d z}\right)}}=- z^{2} e^{- z} + 2 {\color{red}{\left(- z e^{- z} - \int{\left(- e^{- z}\right)d z}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$ avec $$$c=-1$$$ et $$$f{\left(z \right)} = e^{- z}$$$ :
$$- z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{\int{\left(- e^{- z}\right)d z}}} = - z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{\left(- \int{e^{- z} d z}\right)}}$$
Soit $$$u=- z$$$.
Alors $$$du=\left(- z\right)^{\prime }dz = - dz$$$ (les étapes peuvent être vues »), et nous obtenons $$$dz = - du$$$.
L’intégrale peut être réécrite sous la forme
$$- z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\int{e^{- z} d z}}} = - z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = e^{u}$$$ :
$$- z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\int{\left(- e^{u}\right)d u}}} = - z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
L'intégrale de la fonction exponentielle vaut $$$\int{e^{u} d u} = e^{u}$$$ :
$$- z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{\int{e^{u} d u}}} = - z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{e^{u}}}$$
Rappelons que $$$u=- z$$$ :
$$- z^{2} e^{- z} - 2 z e^{- z} - 2 e^{{\color{red}{u}}} = - z^{2} e^{- z} - 2 z e^{- z} - 2 e^{{\color{red}{\left(- z\right)}}}$$
Par conséquent,
$$\int{z^{2} e^{- z} d z} = - z^{2} e^{- z} - 2 z e^{- z} - 2 e^{- z}$$
Simplifier:
$$\int{z^{2} e^{- z} d z} = \left(- z^{2} - 2 z - 2\right) e^{- z}$$
Ajouter la constante d'intégration :
$$\int{z^{2} e^{- z} d z} = \left(- z^{2} - 2 z - 2\right) e^{- z}+C$$
Réponse
$$$\int z^{2} e^{- z}\, dz = \left(- z^{2} - 2 z - 2\right) e^{- z} + C$$$A