Integrale di $$$z^{2} e^{- z}$$$

La calcolatrice troverà l'integrale/primitiva di $$$z^{2} e^{- z}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int z^{2} e^{- z}\, dz$$$.

Soluzione

Per l'integrale $$$\int{z^{2} e^{- z} d z}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=z^{2}$$$ e $$$\operatorname{dv}=e^{- z} dz$$$.

Quindi $$$\operatorname{du}=\left(z^{2}\right)^{\prime }dz=2 z dz$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{e^{- z} d z}=- e^{- z}$$$ (i passaggi si possono vedere »).

Quindi,

$${\color{red}{\int{z^{2} e^{- z} d z}}}={\color{red}{\left(z^{2} \cdot \left(- e^{- z}\right)-\int{\left(- e^{- z}\right) \cdot 2 z d z}\right)}}={\color{red}{\left(- z^{2} e^{- z} - \int{\left(- 2 z e^{- z}\right)d z}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$ con $$$c=-2$$$ e $$$f{\left(z \right)} = z e^{- z}$$$:

$$- z^{2} e^{- z} - {\color{red}{\int{\left(- 2 z e^{- z}\right)d z}}} = - z^{2} e^{- z} - {\color{red}{\left(- 2 \int{z e^{- z} d z}\right)}}$$

Per l'integrale $$$\int{z e^{- z} d z}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=z$$$ e $$$\operatorname{dv}=e^{- z} dz$$$.

Quindi $$$\operatorname{du}=\left(z\right)^{\prime }dz=1 dz$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{e^{- z} d z}=- e^{- z}$$$ (i passaggi si possono vedere »).

L'integrale diventa

$$- z^{2} e^{- z} + 2 {\color{red}{\int{z e^{- z} d z}}}=- z^{2} e^{- z} + 2 {\color{red}{\left(z \cdot \left(- e^{- z}\right)-\int{\left(- e^{- z}\right) \cdot 1 d z}\right)}}=- z^{2} e^{- z} + 2 {\color{red}{\left(- z e^{- z} - \int{\left(- e^{- z}\right)d z}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$ con $$$c=-1$$$ e $$$f{\left(z \right)} = e^{- z}$$$:

$$- z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{\int{\left(- e^{- z}\right)d z}}} = - z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{\left(- \int{e^{- z} d z}\right)}}$$

Sia $$$u=- z$$$.

Quindi $$$du=\left(- z\right)^{\prime }dz = - dz$$$ (i passaggi si possono vedere »), e si ha che $$$dz = - du$$$.

Pertanto,

$$- z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\int{e^{- z} d z}}} = - z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ e $$$f{\left(u \right)} = e^{u}$$$:

$$- z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\int{\left(- e^{u}\right)d u}}} = - z^{2} e^{- z} - 2 z e^{- z} + 2 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$

L'integrale della funzione esponenziale è $$$\int{e^{u} d u} = e^{u}$$$:

$$- z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{\int{e^{u} d u}}} = - z^{2} e^{- z} - 2 z e^{- z} - 2 {\color{red}{e^{u}}}$$

Ricordiamo che $$$u=- z$$$:

$$- z^{2} e^{- z} - 2 z e^{- z} - 2 e^{{\color{red}{u}}} = - z^{2} e^{- z} - 2 z e^{- z} - 2 e^{{\color{red}{\left(- z\right)}}}$$

Pertanto,

$$\int{z^{2} e^{- z} d z} = - z^{2} e^{- z} - 2 z e^{- z} - 2 e^{- z}$$

Semplifica:

$$\int{z^{2} e^{- z} d z} = \left(- z^{2} - 2 z - 2\right) e^{- z}$$

Aggiungi la costante di integrazione:

$$\int{z^{2} e^{- z} d z} = \left(- z^{2} - 2 z - 2\right) e^{- z}+C$$

Risposta

$$$\int z^{2} e^{- z}\, dz = \left(- z^{2} - 2 z - 2\right) e^{- z} + C$$$A


Please try a new game Rotatly