Integraal van $$$\sec^{2}{\left(y \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \sec^{2}{\left(y \right)}\, dy$$$.
Oplossing
De integraal van $$$\sec^{2}{\left(y \right)}$$$ is $$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(y \right)} d y}}} = {\color{red}{\tan{\left(y \right)}}}$$
Dus,
$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}$$
Voeg de integratieconstante toe:
$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}+C$$
Antwoord
$$$\int \sec^{2}{\left(y \right)}\, dy = \tan{\left(y \right)} + C$$$A
Please try a new game Rotatly