Integral de $$$\sec^{2}{\left(y \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \sec^{2}{\left(y \right)}\, dy$$$.
Solución
La integral de $$$\sec^{2}{\left(y \right)}$$$ es $$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(y \right)} d y}}} = {\color{red}{\tan{\left(y \right)}}}$$
Por lo tanto,
$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}$$
Añade la constante de integración:
$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}+C$$
Respuesta
$$$\int \sec^{2}{\left(y \right)}\, dy = \tan{\left(y \right)} + C$$$A
Please try a new game Rotatly