Integral of $$$\sec^{2}{\left(y \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sec^{2}{\left(y \right)}\, dy$$$.
Solution
The integral of $$$\sec^{2}{\left(y \right)}$$$ is $$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(y \right)} d y}}} = {\color{red}{\tan{\left(y \right)}}}$$
Therefore,
$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}$$
Add the constant of integration:
$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}+C$$
Answer
$$$\int \sec^{2}{\left(y \right)}\, dy = \tan{\left(y \right)} + C$$$A
Please try a new game Rotatly