$$$\sec^{2}{\left(y \right)}$$$ 的積分
您的輸入
求$$$\int \sec^{2}{\left(y \right)}\, dy$$$。
解答
$$$\sec^{2}{\left(y \right)}$$$ 的積分是 $$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(y \right)} d y}}} = {\color{red}{\tan{\left(y \right)}}}$$
因此,
$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}$$
加上積分常數:
$$\int{\sec^{2}{\left(y \right)} d y} = \tan{\left(y \right)}+C$$
答案
$$$\int \sec^{2}{\left(y \right)}\, dy = \tan{\left(y \right)} + C$$$A
Please try a new game Rotatly