Integraal van $$$e^{\frac{2 y}{x}}$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int e^{\frac{2 y}{x}}\, dx$$$.
Oplossing
Voor de integraal $$$\int{e^{\frac{2 y}{x}} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Zij $$$\operatorname{u}=e^{\frac{2 y}{x}}$$$ en $$$\operatorname{dv}=dx$$$.
Dan $$$\operatorname{du}=\left(e^{\frac{2 y}{x}}\right)^{\prime }dx=- \frac{2 y e^{\frac{2 y}{x}}}{x^{2}} dx$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{1 d x}=x$$$ (de stappen zijn te zien »).
De integraal kan worden herschreven als
$${\color{red}{\int{e^{\frac{2 y}{x}} d x}}}={\color{red}{\left(e^{\frac{2 y}{x}} \cdot x-\int{x \cdot \left(- \frac{2 y e^{\frac{2 y}{x}}}{x^{2}}\right) d x}\right)}}={\color{red}{\left(x e^{\frac{2 y}{x}} - \int{\left(- \frac{2 y e^{\frac{2 y}{x}}}{x}\right)d x}\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=- 2 y$$$ en $$$f{\left(x \right)} = \frac{e^{\frac{2 y}{x}}}{x}$$$:
$$x e^{\frac{2 y}{x}} - {\color{red}{\int{\left(- \frac{2 y e^{\frac{2 y}{x}}}{x}\right)d x}}} = x e^{\frac{2 y}{x}} - {\color{red}{\left(- 2 y \int{\frac{e^{\frac{2 y}{x}}}{x} d x}\right)}}$$
Zij $$$u=\frac{2 y}{x}$$$.
Dan $$$du=\left(\frac{2 y}{x}\right)^{\prime }dx = - \frac{2 y}{x^{2}} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\frac{dx}{x^{2}} = - \frac{du}{2 y}$$$.
Dus,
$$x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\frac{e^{\frac{2 y}{x}}}{x} d x}}} = x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$:
$$x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}} = x e^{\frac{2 y}{x}} + 2 y {\color{red}{\left(- \int{\frac{e^{u}}{u} d u}\right)}}$$
Deze integraal (Exponentiële integraal) heeft geen gesloten vorm:
$$x e^{\frac{2 y}{x}} - 2 y {\color{red}{\int{\frac{e^{u}}{u} d u}}} = x e^{\frac{2 y}{x}} - 2 y {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
We herinneren eraan dat $$$u=\frac{2 y}{x}$$$:
$$x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left({\color{red}{u}} \right)} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left({\color{red}{\left(\frac{2 y}{x}\right)}} \right)}$$
Dus,
$$\int{e^{\frac{2 y}{x}} d x} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}$$
Voeg de integratieconstante toe:
$$\int{e^{\frac{2 y}{x}} d x} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}+C$$
Antwoord
$$$\int e^{\frac{2 y}{x}}\, dx = \left(x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}\right) + C$$$A