$$$e^{\frac{2 y}{x}}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int e^{\frac{2 y}{x}}\, dx$$$。
解答
對於積分 $$$\int{e^{\frac{2 y}{x}} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=e^{\frac{2 y}{x}}$$$ 與 $$$\operatorname{dv}=dx$$$。
則 $$$\operatorname{du}=\left(e^{\frac{2 y}{x}}\right)^{\prime }dx=- \frac{2 y e^{\frac{2 y}{x}}}{x^{2}} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x}=x$$$(步驟見 »)。
因此,
$${\color{red}{\int{e^{\frac{2 y}{x}} d x}}}={\color{red}{\left(e^{\frac{2 y}{x}} \cdot x-\int{x \cdot \left(- \frac{2 y e^{\frac{2 y}{x}}}{x^{2}}\right) d x}\right)}}={\color{red}{\left(x e^{\frac{2 y}{x}} - \int{\left(- \frac{2 y e^{\frac{2 y}{x}}}{x}\right)d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- 2 y$$$ 與 $$$f{\left(x \right)} = \frac{e^{\frac{2 y}{x}}}{x}$$$:
$$x e^{\frac{2 y}{x}} - {\color{red}{\int{\left(- \frac{2 y e^{\frac{2 y}{x}}}{x}\right)d x}}} = x e^{\frac{2 y}{x}} - {\color{red}{\left(- 2 y \int{\frac{e^{\frac{2 y}{x}}}{x} d x}\right)}}$$
令 $$$u=\frac{2 y}{x}$$$。
則 $$$du=\left(\frac{2 y}{x}\right)^{\prime }dx = - \frac{2 y}{x^{2}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{x^{2}} = - \frac{du}{2 y}$$$。
該積分可改寫為
$$x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\frac{e^{\frac{2 y}{x}}}{x} d x}}} = x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$:
$$x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}} = x e^{\frac{2 y}{x}} + 2 y {\color{red}{\left(- \int{\frac{e^{u}}{u} d u}\right)}}$$
此積分(指數積分)不存在閉式表示:
$$x e^{\frac{2 y}{x}} - 2 y {\color{red}{\int{\frac{e^{u}}{u} d u}}} = x e^{\frac{2 y}{x}} - 2 y {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
回顧一下 $$$u=\frac{2 y}{x}$$$:
$$x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left({\color{red}{u}} \right)} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left({\color{red}{\left(\frac{2 y}{x}\right)}} \right)}$$
因此,
$$\int{e^{\frac{2 y}{x}} d x} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}$$
加上積分常數:
$$\int{e^{\frac{2 y}{x}} d x} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}+C$$
答案
$$$\int e^{\frac{2 y}{x}}\, dx = \left(x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}\right) + C$$$A