Integralen av $$$e^{\frac{2 y}{x}}$$$ med avseende på $$$x$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$e^{\frac{2 y}{x}}$$$ med avseende på $$$x$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int e^{\frac{2 y}{x}}\, dx$$$.

Lösning

För integralen $$$\int{e^{\frac{2 y}{x}} d x}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Låt $$$\operatorname{u}=e^{\frac{2 y}{x}}$$$ och $$$\operatorname{dv}=dx$$$.

Då gäller $$$\operatorname{du}=\left(e^{\frac{2 y}{x}}\right)^{\prime }dx=- \frac{2 y e^{\frac{2 y}{x}}}{x^{2}} dx$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{1 d x}=x$$$ (stegen kan ses »).

Alltså,

$${\color{red}{\int{e^{\frac{2 y}{x}} d x}}}={\color{red}{\left(e^{\frac{2 y}{x}} \cdot x-\int{x \cdot \left(- \frac{2 y e^{\frac{2 y}{x}}}{x^{2}}\right) d x}\right)}}={\color{red}{\left(x e^{\frac{2 y}{x}} - \int{\left(- \frac{2 y e^{\frac{2 y}{x}}}{x}\right)d x}\right)}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=- 2 y$$$ och $$$f{\left(x \right)} = \frac{e^{\frac{2 y}{x}}}{x}$$$:

$$x e^{\frac{2 y}{x}} - {\color{red}{\int{\left(- \frac{2 y e^{\frac{2 y}{x}}}{x}\right)d x}}} = x e^{\frac{2 y}{x}} - {\color{red}{\left(- 2 y \int{\frac{e^{\frac{2 y}{x}}}{x} d x}\right)}}$$

Låt $$$u=\frac{2 y}{x}$$$ vara.

$$$du=\left(\frac{2 y}{x}\right)^{\prime }dx = - \frac{2 y}{x^{2}} dx$$$ (stegen kan ses »), och vi har att $$$\frac{dx}{x^{2}} = - \frac{du}{2 y}$$$.

Alltså,

$$x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\frac{e^{\frac{2 y}{x}}}{x} d x}}} = x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-1$$$ och $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$:

$$x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}} = x e^{\frac{2 y}{x}} + 2 y {\color{red}{\left(- \int{\frac{e^{u}}{u} d u}\right)}}$$

Denna integral (Exponentialintegralen) har ingen sluten form:

$$x e^{\frac{2 y}{x}} - 2 y {\color{red}{\int{\frac{e^{u}}{u} d u}}} = x e^{\frac{2 y}{x}} - 2 y {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$

Kom ihåg att $$$u=\frac{2 y}{x}$$$:

$$x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left({\color{red}{u}} \right)} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left({\color{red}{\left(\frac{2 y}{x}\right)}} \right)}$$

Alltså,

$$\int{e^{\frac{2 y}{x}} d x} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}$$

Lägg till integrationskonstanten:

$$\int{e^{\frac{2 y}{x}} d x} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}+C$$

Svar

$$$\int e^{\frac{2 y}{x}}\, dx = \left(x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}\right) + C$$$A


Please try a new game Rotatly