Integraali $$$e^{\frac{2 y}{x}}$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int e^{\frac{2 y}{x}}\, dx$$$.
Ratkaisu
Integraalin $$$\int{e^{\frac{2 y}{x}} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=e^{\frac{2 y}{x}}$$$ ja $$$\operatorname{dv}=dx$$$.
Tällöin $$$\operatorname{du}=\left(e^{\frac{2 y}{x}}\right)^{\prime }dx=- \frac{2 y e^{\frac{2 y}{x}}}{x^{2}} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d x}=x$$$ (vaiheet ovat nähtävissä »).
Näin ollen,
$${\color{red}{\int{e^{\frac{2 y}{x}} d x}}}={\color{red}{\left(e^{\frac{2 y}{x}} \cdot x-\int{x \cdot \left(- \frac{2 y e^{\frac{2 y}{x}}}{x^{2}}\right) d x}\right)}}={\color{red}{\left(x e^{\frac{2 y}{x}} - \int{\left(- \frac{2 y e^{\frac{2 y}{x}}}{x}\right)d x}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=- 2 y$$$ ja $$$f{\left(x \right)} = \frac{e^{\frac{2 y}{x}}}{x}$$$:
$$x e^{\frac{2 y}{x}} - {\color{red}{\int{\left(- \frac{2 y e^{\frac{2 y}{x}}}{x}\right)d x}}} = x e^{\frac{2 y}{x}} - {\color{red}{\left(- 2 y \int{\frac{e^{\frac{2 y}{x}}}{x} d x}\right)}}$$
Olkoon $$$u=\frac{2 y}{x}$$$.
Tällöin $$$du=\left(\frac{2 y}{x}\right)^{\prime }dx = - \frac{2 y}{x^{2}} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{x^{2}} = - \frac{du}{2 y}$$$.
Integraali muuttuu muotoon
$$x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\frac{e^{\frac{2 y}{x}}}{x} d x}}} = x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$:
$$x e^{\frac{2 y}{x}} + 2 y {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}} = x e^{\frac{2 y}{x}} + 2 y {\color{red}{\left(- \int{\frac{e^{u}}{u} d u}\right)}}$$
Tällä integraalilla (Eksponentti-integraali) ei ole suljettua muotoa:
$$x e^{\frac{2 y}{x}} - 2 y {\color{red}{\int{\frac{e^{u}}{u} d u}}} = x e^{\frac{2 y}{x}} - 2 y {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
Muista, että $$$u=\frac{2 y}{x}$$$:
$$x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left({\color{red}{u}} \right)} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left({\color{red}{\left(\frac{2 y}{x}\right)}} \right)}$$
Näin ollen,
$$\int{e^{\frac{2 y}{x}} d x} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}$$
Lisää integrointivakio:
$$\int{e^{\frac{2 y}{x}} d x} = x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}+C$$
Vastaus
$$$\int e^{\frac{2 y}{x}}\, dx = \left(x e^{\frac{2 y}{x}} - 2 y \operatorname{Ei}{\left(\frac{2 y}{x} \right)}\right) + C$$$A