Integraal van $$$の e^{- x^{2}}$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int の e^{- x^{2}}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=の$$$ en $$$f{\left(x \right)} = e^{- x^{2}}$$$:
$${\color{red}{\int{の e^{- x^{2}} d x}}} = {\color{red}{の \int{e^{- x^{2}} d x}}}$$
Deze integraal (Foutfunctie) heeft geen gesloten vorm:
$$の {\color{red}{\int{e^{- x^{2}} d x}}} = の {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}$$
Dus,
$$\int{の e^{- x^{2}} d x} = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2}$$
Voeg de integratieconstante toe:
$$\int{の e^{- x^{2}} d x} = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2}+C$$
Antwoord
$$$\int の e^{- x^{2}}\, dx = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2} + C$$$A