Integraal van $$$の e^{- x^{2}}$$$ met betrekking tot $$$x$$$

De rekenmachine zal de integraal/primitieve van $$$の e^{- x^{2}}$$$ met betrekking tot $$$x$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int の e^{- x^{2}}\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=の$$$ en $$$f{\left(x \right)} = e^{- x^{2}}$$$:

$${\color{red}{\int{の e^{- x^{2}} d x}}} = {\color{red}{の \int{e^{- x^{2}} d x}}}$$

Deze integraal (Foutfunctie) heeft geen gesloten vorm:

$$の {\color{red}{\int{e^{- x^{2}} d x}}} = の {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}$$

Dus,

$$\int{の e^{- x^{2}} d x} = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2}$$

Voeg de integratieconstante toe:

$$\int{の e^{- x^{2}} d x} = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2}+C$$

Antwoord

$$$\int の e^{- x^{2}}\, dx = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly