$$$の e^{- x^{2}}$$$ 关于$$$x$$$的积分

该计算器将求出$$$の e^{- x^{2}}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int の e^{- x^{2}}\, dx$$$

解答

$$$c=の$$$$$$f{\left(x \right)} = e^{- x^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{の e^{- x^{2}} d x}}} = {\color{red}{の \int{e^{- x^{2}} d x}}}$$

该积分(误差函数)没有闭式表达式:

$$の {\color{red}{\int{e^{- x^{2}} d x}}} = の {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}$$

因此,

$$\int{の e^{- x^{2}} d x} = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2}$$

加上积分常数:

$$\int{の e^{- x^{2}} d x} = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2}+C$$

答案

$$$\int の e^{- x^{2}}\, dx = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly