Integral dari $$$の e^{- x^{2}}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int の e^{- x^{2}}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=の$$$ dan $$$f{\left(x \right)} = e^{- x^{2}}$$$:
$${\color{red}{\int{の e^{- x^{2}} d x}}} = {\color{red}{の \int{e^{- x^{2}} d x}}}$$
Integral ini (Fungsi galat) tidak memiliki bentuk tertutup:
$$の {\color{red}{\int{e^{- x^{2}} d x}}} = の {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}$$
Oleh karena itu,
$$\int{の e^{- x^{2}} d x} = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2}$$
Tambahkan konstanta integrasi:
$$\int{の e^{- x^{2}} d x} = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2}+C$$
Jawaban
$$$\int の e^{- x^{2}}\, dx = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2} + C$$$A