Ολοκλήρωμα της $$$の e^{- x^{2}}$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$の e^{- x^{2}}$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int の e^{- x^{2}}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=の$$$ και $$$f{\left(x \right)} = e^{- x^{2}}$$$:

$${\color{red}{\int{の e^{- x^{2}} d x}}} = {\color{red}{の \int{e^{- x^{2}} d x}}}$$

Αυτό το ολοκλήρωμα (Συνάρτηση σφάλματος) δεν έχει κλειστή μορφή:

$$の {\color{red}{\int{e^{- x^{2}} d x}}} = の {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}$$

Επομένως,

$$\int{の e^{- x^{2}} d x} = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{の e^{- x^{2}} d x} = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2}+C$$

Απάντηση

$$$\int の e^{- x^{2}}\, dx = \frac{\sqrt{\pi} の \operatorname{erf}{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly