$$$\sec{\left(\frac{x}{2} \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\sec{\left(\frac{x}{2} \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \sec{\left(\frac{x}{2} \right)}\, dx$$$을(를) 구하시오.

풀이

$$$u=\frac{x}{2}$$$라 하자.

그러면 $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = 2 du$$$임을 얻습니다.

적분은 다음과 같이 다시 쓸 수 있습니다.

$${\color{red}{\int{\sec{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sec{\left(u \right)} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=2$$$$$$f{\left(u \right)} = \sec{\left(u \right)}$$$에 적용하세요:

$${\color{red}{\int{2 \sec{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sec{\left(u \right)} d u}\right)}}$$

시컨트를 $$$\sec\left( u \right)=\frac{1}{\cos\left( u \right)}$$$로 다시 쓰세요:

$$2 {\color{red}{\int{\sec{\left(u \right)} d u}}} = 2 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}$$

$$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$ 공식을 사용하여 코사인을 사인의 함수로 나타낸 다음, $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$ 배각공식을 사용하여 사인을 다시 쓰십시오.:

$$2 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}} = 2 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}$$

분자와 분모에 $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$를 곱합니다.:

$$2 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}} = 2 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}$$

$$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$라 하자.

그러면 $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$임을 얻습니다.

따라서,

$$2 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}} = 2 {\color{red}{\int{\frac{1}{v} d v}}}$$

$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$2 {\color{red}{\int{\frac{1}{v} d v}}} = 2 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

다음 $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$을 기억하라:

$$2 \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}$$

다음 $$$u=\frac{x}{2}$$$을 기억하라:

$$2 \ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)} = 2 \ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(\frac{x}{2}\right)}}}{2} \right)}}\right| \right)}$$

따라서,

$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x}{4} + \frac{\pi}{4} \right)}}\right| \right)}$$

간단히 하시오:

$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right| \right)}$$

적분 상수를 추가하세요:

$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right| \right)}+C$$

정답

$$$\int \sec{\left(\frac{x}{2} \right)}\, dx = 2 \ln\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right|\right) + C$$$A


Please try a new game Rotatly