Integral dari $$$\sec{\left(\frac{x}{2} \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sec{\left(\frac{x}{2} \right)}\, dx$$$.
Solusi
Misalkan $$$u=\frac{x}{2}$$$.
Kemudian $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = 2 du$$$.
Oleh karena itu,
$${\color{red}{\int{\sec{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sec{\left(u \right)} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=2$$$ dan $$$f{\left(u \right)} = \sec{\left(u \right)}$$$:
$${\color{red}{\int{2 \sec{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sec{\left(u \right)} d u}\right)}}$$
Tulis ulang sekan sebagai $$$\sec\left( u \right)=\frac{1}{\cos\left( u \right)}$$$:
$$2 {\color{red}{\int{\sec{\left(u \right)} d u}}} = 2 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}$$
Tulis ulang kosinus dalam bentuk sinus menggunakan rumus $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$ dan kemudian tulis ulang sinus menggunakan rumus sudut rangkap $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$:
$$2 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}} = 2 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}$$
Kalikan pembilang dan penyebut dengan $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$:
$$2 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}} = 2 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}$$
Misalkan $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.
Kemudian $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.
Jadi,
$$2 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}} = 2 {\color{red}{\int{\frac{1}{v} d v}}}$$
Integral dari $$$\frac{1}{v}$$$ adalah $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{v} d v}}} = 2 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Ingat bahwa $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:
$$2 \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}$$
Ingat bahwa $$$u=\frac{x}{2}$$$:
$$2 \ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)} = 2 \ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(\frac{x}{2}\right)}}}{2} \right)}}\right| \right)}$$
Oleh karena itu,
$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x}{4} + \frac{\pi}{4} \right)}}\right| \right)}$$
Sederhanakan:
$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right| \right)}+C$$
Jawaban
$$$\int \sec{\left(\frac{x}{2} \right)}\, dx = 2 \ln\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right|\right) + C$$$A