Ολοκλήρωμα του $$$\sec{\left(\frac{x}{2} \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \sec{\left(\frac{x}{2} \right)}\, dx$$$.
Λύση
Έστω $$$u=\frac{x}{2}$$$.
Τότε $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = 2 du$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$${\color{red}{\int{\sec{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sec{\left(u \right)} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=2$$$ και $$$f{\left(u \right)} = \sec{\left(u \right)}$$$:
$${\color{red}{\int{2 \sec{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sec{\left(u \right)} d u}\right)}}$$
Εκφράστε την τέμνουσα ως $$$\sec\left( u \right)=\frac{1}{\cos\left( u \right)}$$$:
$$2 {\color{red}{\int{\sec{\left(u \right)} d u}}} = 2 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}$$
Εκφράστε το συνημίτονο σε όρους του ημιτόνου χρησιμοποιώντας τον τύπο $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$ και στη συνέχεια εκφράστε το ημίτονο χρησιμοποιώντας τον τύπο της διπλής γωνίας $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$:
$$2 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}} = 2 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}$$
Πολλαπλασιάστε τον αριθμητή και τον παρονομαστή με $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$:
$$2 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}} = 2 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}$$
Έστω $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.
Τότε $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$2 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}} = 2 {\color{red}{\int{\frac{1}{v} d v}}}$$
Το ολοκλήρωμα του $$$\frac{1}{v}$$$ είναι $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{v} d v}}} = 2 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Θυμηθείτε ότι $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:
$$2 \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}$$
Θυμηθείτε ότι $$$u=\frac{x}{2}$$$:
$$2 \ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)} = 2 \ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(\frac{x}{2}\right)}}}{2} \right)}}\right| \right)}$$
Επομένως,
$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x}{4} + \frac{\pi}{4} \right)}}\right| \right)}$$
Απλοποιήστε:
$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right| \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right| \right)}+C$$
Απάντηση
$$$\int \sec{\left(\frac{x}{2} \right)}\, dx = 2 \ln\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right|\right) + C$$$A