Intégrale de $$$\sec{\left(\frac{x}{2} \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sec{\left(\frac{x}{2} \right)}\, dx$$$.
Solution
Soit $$$u=\frac{x}{2}$$$.
Alors $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = 2 du$$$.
Par conséquent,
$${\color{red}{\int{\sec{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sec{\left(u \right)} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=2$$$ et $$$f{\left(u \right)} = \sec{\left(u \right)}$$$ :
$${\color{red}{\int{2 \sec{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sec{\left(u \right)} d u}\right)}}$$
Réécrivez la sécante sous la forme $$$\sec\left( u \right)=\frac{1}{\cos\left( u \right)}$$$:
$$2 {\color{red}{\int{\sec{\left(u \right)} d u}}} = 2 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}$$
Réécrivez le cosinus en fonction du sinus à l’aide de la formule $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$, puis réécrivez le sinus à l’aide de la formule de l’angle double $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$:
$$2 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}} = 2 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}$$
Multipliez le numérateur et le dénominateur par $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$:
$$2 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}} = 2 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}$$
Soit $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.
Alors $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.
L’intégrale peut être réécrite sous la forme
$$2 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}} = 2 {\color{red}{\int{\frac{1}{v} d v}}}$$
L’intégrale de $$$\frac{1}{v}$$$ est $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ :
$$2 {\color{red}{\int{\frac{1}{v} d v}}} = 2 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Rappelons que $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$ :
$$2 \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}$$
Rappelons que $$$u=\frac{x}{2}$$$ :
$$2 \ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)} = 2 \ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(\frac{x}{2}\right)}}}{2} \right)}}\right| \right)}$$
Par conséquent,
$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x}{4} + \frac{\pi}{4} \right)}}\right| \right)}$$
Simplifier:
$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right| \right)}$$
Ajouter la constante d'intégration :
$$\int{\sec{\left(\frac{x}{2} \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right| \right)}+C$$
Réponse
$$$\int \sec{\left(\frac{x}{2} \right)}\, dx = 2 \ln\left(\left|{\tan{\left(\frac{x + \pi}{4} \right)}}\right|\right) + C$$$A