$$$t^{2}$$$の積分
入力内容
$$$\int t^{2}\, dt$$$ を求めよ。
解答
$$$n=2$$$ を用いて、べき乗の法則 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{t^{2} d t}}}={\color{red}{\frac{t^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
したがって、
$$\int{t^{2} d t} = \frac{t^{3}}{3}$$
積分定数を加える:
$$\int{t^{2} d t} = \frac{t^{3}}{3}+C$$
解答
$$$\int t^{2}\, dt = \frac{t^{3}}{3} + C$$$A
Please try a new game Rotatly