Integrale di $$$t^{2}$$$

La calcolatrice troverà l'integrale/primitiva di $$$t^{2}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int t^{2}\, dt$$$.

Soluzione

Applica la regola della potenza $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$${\color{red}{\int{t^{2} d t}}}={\color{red}{\frac{t^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{t^{3}}{3}\right)}}$$

Pertanto,

$$\int{t^{2} d t} = \frac{t^{3}}{3}$$

Aggiungi la costante di integrazione:

$$\int{t^{2} d t} = \frac{t^{3}}{3}+C$$

Risposta

$$$\int t^{2}\, dt = \frac{t^{3}}{3} + C$$$A


Please try a new game Rotatly