Integralen av $$$t^{2}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int t^{2}\, dt$$$.
Lösning
Tillämpa potensregeln $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=2$$$:
$${\color{red}{\int{t^{2} d t}}}={\color{red}{\frac{t^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
Alltså,
$$\int{t^{2} d t} = \frac{t^{3}}{3}$$
Lägg till integrationskonstanten:
$$\int{t^{2} d t} = \frac{t^{3}}{3}+C$$
Svar
$$$\int t^{2}\, dt = \frac{t^{3}}{3} + C$$$A
Please try a new game Rotatly