$$$\sqrt{2} \sqrt{x}$$$の導関数
入力内容
$$$\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right)$$$ を求めよ。
解答
定数倍の法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ を $$$c = \sqrt{2}$$$ と $$$f{\left(x \right)} = \sqrt{x}$$$ に対して適用します:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right)\right)} = {\color{red}\left(\sqrt{2} \frac{d}{dx} \left(\sqrt{x}\right)\right)}$$冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を $$$n = \frac{1}{2}$$$ に対して適用する:
$$\sqrt{2} {\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)} = \sqrt{2} {\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}$$したがって、$$$\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right) = \frac{\sqrt{2}}{2 \sqrt{x}}$$$。
解答
$$$\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right) = \frac{\sqrt{2}}{2 \sqrt{x}}$$$A
Please try a new game Rotatly