Funktion $$$\sqrt{2} \sqrt{x}$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right)$$$.
Ratkaisu
Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = \sqrt{2}$$$ ja $$$f{\left(x \right)} = \sqrt{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right)\right)} = {\color{red}\left(\sqrt{2} \frac{d}{dx} \left(\sqrt{x}\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$, kun $$$n = \frac{1}{2}$$$:
$$\sqrt{2} {\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)} = \sqrt{2} {\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}$$Näin ollen, $$$\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right) = \frac{\sqrt{2}}{2 \sqrt{x}}$$$.
Vastaus
$$$\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right) = \frac{\sqrt{2}}{2 \sqrt{x}}$$$A