Seconda derivata di $$$2^{n}$$$
Calcolatrici correlate: Calcolatore di derivate, Calcolatrice di derivazione logaritmica
Il tuo input
Trova $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right)$$$.
Soluzione
Trova la derivata prima $$$\frac{d}{dn} \left(2^{n}\right)$$$
Applica la regola degli esponenti $$$\frac{d}{dn} \left(m^{n}\right) = m^{n} \ln\left(m\right)$$$ con $$$m = 2$$$:
$${\color{red}\left(\frac{d}{dn} \left(2^{n}\right)\right)} = {\color{red}\left(2^{n} \ln\left(2\right)\right)}$$Quindi, $$$\frac{d}{dn} \left(2^{n}\right) = 2^{n} \ln\left(2\right)$$$.
Successivamente, $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = \frac{d}{dn} \left(2^{n} \ln\left(2\right)\right)$$$
Applica la regola del multiplo costante $$$\frac{d}{dn} \left(c f{\left(n \right)}\right) = c \frac{d}{dn} \left(f{\left(n \right)}\right)$$$ con $$$c = \ln\left(2\right)$$$ e $$$f{\left(n \right)} = 2^{n}$$$:
$${\color{red}\left(\frac{d}{dn} \left(2^{n} \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{dn} \left(2^{n}\right)\right)}$$Applica la regola degli esponenti $$$\frac{d}{dn} \left(m^{n}\right) = m^{n} \ln\left(m\right)$$$ con $$$m = 2$$$:
$$\ln\left(2\right) {\color{red}\left(\frac{d}{dn} \left(2^{n}\right)\right)} = \ln\left(2\right) {\color{red}\left(2^{n} \ln\left(2\right)\right)}$$Quindi, $$$\frac{d}{dn} \left(2^{n} \ln\left(2\right)\right) = 2^{n} \ln^{2}\left(2\right)$$$.
Pertanto, $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = 2^{n} \ln^{2}\left(2\right)$$$.
Risposta
$$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = 2^{n} \ln^{2}\left(2\right)$$$A