Second derivative of $$$2^{n}$$$

The calculator will find the second derivative of $$$2^{n}$$$, with steps shown.

Related calculators: Derivative Calculator, Logarithmic Differentiation Calculator

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right)$$$.

Solution

Find the first derivative $$$\frac{d}{dn} \left(2^{n}\right)$$$

Apply the exponential rule $$$\frac{d}{dn} \left(m^{n}\right) = m^{n} \ln\left(m\right)$$$ with $$$m = 2$$$:

$${\color{red}\left(\frac{d}{dn} \left(2^{n}\right)\right)} = {\color{red}\left(2^{n} \ln\left(2\right)\right)}$$

Thus, $$$\frac{d}{dn} \left(2^{n}\right) = 2^{n} \ln\left(2\right)$$$.

Next, $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = \frac{d}{dn} \left(2^{n} \ln\left(2\right)\right)$$$

Apply the constant multiple rule $$$\frac{d}{dn} \left(c f{\left(n \right)}\right) = c \frac{d}{dn} \left(f{\left(n \right)}\right)$$$ with $$$c = \ln\left(2\right)$$$ and $$$f{\left(n \right)} = 2^{n}$$$:

$${\color{red}\left(\frac{d}{dn} \left(2^{n} \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{dn} \left(2^{n}\right)\right)}$$

Apply the exponential rule $$$\frac{d}{dn} \left(m^{n}\right) = m^{n} \ln\left(m\right)$$$ with $$$m = 2$$$:

$$\ln\left(2\right) {\color{red}\left(\frac{d}{dn} \left(2^{n}\right)\right)} = \ln\left(2\right) {\color{red}\left(2^{n} \ln\left(2\right)\right)}$$

Thus, $$$\frac{d}{dn} \left(2^{n} \ln\left(2\right)\right) = 2^{n} \ln^{2}\left(2\right)$$$.

Therefore, $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = 2^{n} \ln^{2}\left(2\right)$$$.

Answer

$$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = 2^{n} \ln^{2}\left(2\right)$$$A


Please try a new game Rotatly