# Logarithmic Differentiation Calculator

## Calculate derivatives step by step using logarithms

The online calculator will calculate the derivative of any function using the logarithmic differentiation, with steps shown. Also, it will evaluate the derivative at the given point if needed.

Related calculator: Derivative Calculator

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Find $\frac{d}{dx} \left(x^{\sin{\left(x \right)}}\right)$.

### Solution

Let $H{\left(x \right)} = x^{\sin{\left(x \right)}}$.

Take the logarithm of both sides: $\ln{\left(H{\left(x \right)} \right)} = \ln{\left(x^{\sin{\left(x \right)}} \right)}$.

Rewrite the RHS using the properties of logarithms: $\ln{\left(H{\left(x \right)} \right)} = \ln{\left(x \right)} \sin{\left(x \right)}$.

Differentiate separately both sides of the equation: $\frac{d}{dx} \left(\ln{\left(H{\left(x \right)} \right)}\right) = \frac{d}{dx} \left(\ln{\left(x \right)} \sin{\left(x \right)}\right)$.

Differentiate the LHS of the equation.

The function $\ln{\left(H{\left(x \right)} \right)}$ is the composition $f{\left(g{\left(x \right)} \right)}$ of two functions $f{\left(u \right)} = \ln{\left(u \right)}$ and $g{\left(x \right)} = H{\left(x \right)}$.

Apply the chain rule $\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$:

$${\color{red}\left(\frac{d}{dx} \left(\ln{\left(H{\left(x \right)} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln{\left(u \right)}\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

The derivative of the natural logarithm is $\frac{d}{du} \left(\ln{\left(u \right)}\right) = \frac{1}{u}$:

$${\color{red}\left(\frac{d}{du} \left(\ln{\left(u \right)}\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Thus, $\frac{d}{dx} \left(\ln{\left(H{\left(x \right)} \right)}\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$.

Differentiate the RHS of the equation.

Apply the product rule $\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$ with $f{\left(x \right)} = \ln{\left(x \right)}$ and $g{\left(x \right)} = \sin{\left(x \right)}$:

$${\color{red}\left(\frac{d}{dx} \left(\ln{\left(x \right)} \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\ln{\left(x \right)}\right) \sin{\left(x \right)} + \ln{\left(x \right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

The derivative of the natural logarithm is $\frac{d}{dx} \left(\ln{\left(x \right)}\right) = \frac{1}{x}$:

$$\ln{\left(x \right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right) + \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\ln{\left(x \right)}\right)\right)} = \ln{\left(x \right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right) + \sin{\left(x \right)} {\color{red}\left(\frac{1}{x}\right)}$$

The derivative of the sine is $\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$:

$$\ln{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{\sin{\left(x \right)}}{x} = \ln{\left(x \right)} {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{\sin{\left(x \right)}}{x}$$

Thus, $\frac{d}{dx} \left(\ln{\left(x \right)} \sin{\left(x \right)}\right) = \ln{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}$.

Hence, $\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \ln{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}$.

Therefore, $\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\ln{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}\right) H{\left(x \right)} = x^{\sin{\left(x \right)} - 1} \left(x \ln{\left(x \right)} \cos{\left(x \right)} + \sin{\left(x \right)}\right).$

$\frac{d}{dx} \left(x^{\sin{\left(x \right)}}\right) = x^{\sin{\left(x \right)} - 1} \left(x \ln{\left(x \right)} \cos{\left(x \right)} + \sin{\left(x \right)}\right)$A