Tweede afgeleide van $$$2^{n}$$$
Gerelateerde rekenmachines: Afgeleide rekenmachine, Rekenmachine voor logaritmisch differentiëren
Uw invoer
Bepaal $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right)$$$.
Oplossing
Bepaal de eerste afgeleide $$$\frac{d}{dn} \left(2^{n}\right)$$$
Pas de machtsregel $$$\frac{d}{dn} \left(m^{n}\right) = m^{n} \ln\left(m\right)$$$ toe met $$$m = 2$$$:
$${\color{red}\left(\frac{d}{dn} \left(2^{n}\right)\right)} = {\color{red}\left(2^{n} \ln\left(2\right)\right)}$$Dus, $$$\frac{d}{dn} \left(2^{n}\right) = 2^{n} \ln\left(2\right)$$$.
Vervolgens, $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = \frac{d}{dn} \left(2^{n} \ln\left(2\right)\right)$$$
Pas de regel van de constante factor $$$\frac{d}{dn} \left(c f{\left(n \right)}\right) = c \frac{d}{dn} \left(f{\left(n \right)}\right)$$$ toe met $$$c = \ln\left(2\right)$$$ en $$$f{\left(n \right)} = 2^{n}$$$:
$${\color{red}\left(\frac{d}{dn} \left(2^{n} \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{dn} \left(2^{n}\right)\right)}$$Pas de machtsregel $$$\frac{d}{dn} \left(m^{n}\right) = m^{n} \ln\left(m\right)$$$ toe met $$$m = 2$$$:
$$\ln\left(2\right) {\color{red}\left(\frac{d}{dn} \left(2^{n}\right)\right)} = \ln\left(2\right) {\color{red}\left(2^{n} \ln\left(2\right)\right)}$$Dus, $$$\frac{d}{dn} \left(2^{n} \ln\left(2\right)\right) = 2^{n} \ln^{2}\left(2\right)$$$.
Daarom geldt $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = 2^{n} \ln^{2}\left(2\right)$$$.
Antwoord
$$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = 2^{n} \ln^{2}\left(2\right)$$$A