Segunda derivada de $$$2^{n}$$$

A calculadora encontrará a segunda derivada de $$$2^{n}$$$, com os passos mostrados.

Calculadoras relacionadas: Calculadora de Derivadas, Calculadora de Derivação Logarítmica

Deixe em branco para detecção automática.
Deixe em branco, se não precisar da derivada em um ponto específico.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right)$$$.

Solução

Encontre a primeira derivada $$$\frac{d}{dn} \left(2^{n}\right)$$$

Aplique a regra exponencial $$$\frac{d}{dn} \left(m^{n}\right) = m^{n} \ln\left(m\right)$$$ com $$$m = 2$$$:

$${\color{red}\left(\frac{d}{dn} \left(2^{n}\right)\right)} = {\color{red}\left(2^{n} \ln\left(2\right)\right)}$$

Logo, $$$\frac{d}{dn} \left(2^{n}\right) = 2^{n} \ln\left(2\right)$$$.

Em seguida, $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = \frac{d}{dn} \left(2^{n} \ln\left(2\right)\right)$$$

Aplique a regra da constante multiplicativa $$$\frac{d}{dn} \left(c f{\left(n \right)}\right) = c \frac{d}{dn} \left(f{\left(n \right)}\right)$$$ com $$$c = \ln\left(2\right)$$$ e $$$f{\left(n \right)} = 2^{n}$$$:

$${\color{red}\left(\frac{d}{dn} \left(2^{n} \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{dn} \left(2^{n}\right)\right)}$$

Aplique a regra exponencial $$$\frac{d}{dn} \left(m^{n}\right) = m^{n} \ln\left(m\right)$$$ com $$$m = 2$$$:

$$\ln\left(2\right) {\color{red}\left(\frac{d}{dn} \left(2^{n}\right)\right)} = \ln\left(2\right) {\color{red}\left(2^{n} \ln\left(2\right)\right)}$$

Logo, $$$\frac{d}{dn} \left(2^{n} \ln\left(2\right)\right) = 2^{n} \ln^{2}\left(2\right)$$$.

Portanto, $$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = 2^{n} \ln^{2}\left(2\right)$$$.

Resposta

$$$\frac{d^{2}}{dn^{2}} \left(2^{n}\right) = 2^{n} \ln^{2}\left(2\right)$$$A


Please try a new game Rotatly