Funktion $$$\sin{\left(4 y_{} \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \sin{\left(4 y_{} \right)}\, dy_{}$$$.
Ratkaisu
Olkoon $$$u=4 y_{}$$$.
Tällöin $$$du=\left(4 y_{}\right)^{\prime }dy_{} = 4 dy_{}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dy_{} = \frac{du}{4}$$$.
Siis,
$${\color{red}{\int{\sin{\left(4 y_{} \right)} d y_{}}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{4}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{4}\right)}}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Muista, että $$$u=4 y_{}$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\cos{\left({\color{red}{\left(4 y_{}\right)}} \right)}}{4}$$
Näin ollen,
$$\int{\sin{\left(4 y_{} \right)} d y_{}} = - \frac{\cos{\left(4 y_{} \right)}}{4}$$
Lisää integrointivakio:
$$\int{\sin{\left(4 y_{} \right)} d y_{}} = - \frac{\cos{\left(4 y_{} \right)}}{4}+C$$
Vastaus
$$$\int \sin{\left(4 y_{} \right)}\, dy_{} = - \frac{\cos{\left(4 y_{} \right)}}{4} + C$$$A