$$$\sin{\left(4 y_{} \right)}$$$ 的積分
您的輸入
求$$$\int \sin{\left(4 y_{} \right)}\, dy_{}$$$。
解答
令 $$$u=4 y_{}$$$。
則 $$$du=\left(4 y_{}\right)^{\prime }dy_{} = 4 dy_{}$$$ (步驟見»),並可得 $$$dy_{} = \frac{du}{4}$$$。
因此,
$${\color{red}{\int{\sin{\left(4 y_{} \right)} d y_{}}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{4}$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{4}\right)}}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
回顧一下 $$$u=4 y_{}$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\cos{\left({\color{red}{\left(4 y_{}\right)}} \right)}}{4}$$
因此,
$$\int{\sin{\left(4 y_{} \right)} d y_{}} = - \frac{\cos{\left(4 y_{} \right)}}{4}$$
加上積分常數:
$$\int{\sin{\left(4 y_{} \right)} d y_{}} = - \frac{\cos{\left(4 y_{} \right)}}{4}+C$$
答案
$$$\int \sin{\left(4 y_{} \right)}\, dy_{} = - \frac{\cos{\left(4 y_{} \right)}}{4} + C$$$A