Integral de $$$\sin{\left(4 y_{} \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \sin{\left(4 y_{} \right)}\, dy_{}$$$.
Solución
Sea $$$u=4 y_{}$$$.
Entonces $$$du=\left(4 y_{}\right)^{\prime }dy_{} = 4 dy_{}$$$ (los pasos pueden verse »), y obtenemos que $$$dy_{} = \frac{du}{4}$$$.
Por lo tanto,
$${\color{red}{\int{\sin{\left(4 y_{} \right)} d y_{}}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{4}\right)}}$$
La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Recordemos que $$$u=4 y_{}$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\cos{\left({\color{red}{\left(4 y_{}\right)}} \right)}}{4}$$
Por lo tanto,
$$\int{\sin{\left(4 y_{} \right)} d y_{}} = - \frac{\cos{\left(4 y_{} \right)}}{4}$$
Añade la constante de integración:
$$\int{\sin{\left(4 y_{} \right)} d y_{}} = - \frac{\cos{\left(4 y_{} \right)}}{4}+C$$
Respuesta
$$$\int \sin{\left(4 y_{} \right)}\, dy_{} = - \frac{\cos{\left(4 y_{} \right)}}{4} + C$$$A