Integraali $$$\frac{f_{1} \tan^{2}{\left(f \right)}}{g}$$$:stä muuttujan $$$g$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{f_{1} \tan^{2}{\left(f \right)}}{g}\, dg$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(g \right)}\, dg = c \int f{\left(g \right)}\, dg$$$ käyttäen $$$c=f_{1} \tan^{2}{\left(f \right)}$$$ ja $$$f{\left(g \right)} = \frac{1}{g}$$$:
$${\color{red}{\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g}}} = {\color{red}{f_{1} \tan^{2}{\left(f \right)} \int{\frac{1}{g} d g}}}$$
Funktion $$$\frac{1}{g}$$$ integraali on $$$\int{\frac{1}{g} d g} = \ln{\left(\left|{g}\right| \right)}$$$:
$$f_{1} \tan^{2}{\left(f \right)} {\color{red}{\int{\frac{1}{g} d g}}} = f_{1} \tan^{2}{\left(f \right)} {\color{red}{\ln{\left(\left|{g}\right| \right)}}}$$
Näin ollen,
$$\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g} = f_{1} \ln{\left(\left|{g}\right| \right)} \tan^{2}{\left(f \right)}$$
Lisää integrointivakio:
$$\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g} = f_{1} \ln{\left(\left|{g}\right| \right)} \tan^{2}{\left(f \right)}+C$$
Vastaus
$$$\int \frac{f_{1} \tan^{2}{\left(f \right)}}{g}\, dg = f_{1} \ln\left(\left|{g}\right|\right) \tan^{2}{\left(f \right)} + C$$$A