$$$\frac{f_{1} \tan^{2}{\left(f \right)}}{g}$$$ 关于$$$g$$$的积分

该计算器将求出$$$\frac{f_{1} \tan^{2}{\left(f \right)}}{g}$$$关于$$$g$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{f_{1} \tan^{2}{\left(f \right)}}{g}\, dg$$$

解答

$$$c=f_{1} \tan^{2}{\left(f \right)}$$$$$$f{\left(g \right)} = \frac{1}{g}$$$ 应用常数倍法则 $$$\int c f{\left(g \right)}\, dg = c \int f{\left(g \right)}\, dg$$$

$${\color{red}{\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g}}} = {\color{red}{f_{1} \tan^{2}{\left(f \right)} \int{\frac{1}{g} d g}}}$$

$$$\frac{1}{g}$$$ 的积分为 $$$\int{\frac{1}{g} d g} = \ln{\left(\left|{g}\right| \right)}$$$:

$$f_{1} \tan^{2}{\left(f \right)} {\color{red}{\int{\frac{1}{g} d g}}} = f_{1} \tan^{2}{\left(f \right)} {\color{red}{\ln{\left(\left|{g}\right| \right)}}}$$

因此,

$$\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g} = f_{1} \ln{\left(\left|{g}\right| \right)} \tan^{2}{\left(f \right)}$$

加上积分常数:

$$\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g} = f_{1} \ln{\left(\left|{g}\right| \right)} \tan^{2}{\left(f \right)}+C$$

答案

$$$\int \frac{f_{1} \tan^{2}{\left(f \right)}}{g}\, dg = f_{1} \ln\left(\left|{g}\right|\right) \tan^{2}{\left(f \right)} + C$$$A


Please try a new game Rotatly