Integralen av $$$\frac{f_{1} \tan^{2}{\left(f \right)}}{g}$$$ med avseende på $$$g$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{f_{1} \tan^{2}{\left(f \right)}}{g}\, dg$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(g \right)}\, dg = c \int f{\left(g \right)}\, dg$$$ med $$$c=f_{1} \tan^{2}{\left(f \right)}$$$ och $$$f{\left(g \right)} = \frac{1}{g}$$$:
$${\color{red}{\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g}}} = {\color{red}{f_{1} \tan^{2}{\left(f \right)} \int{\frac{1}{g} d g}}}$$
Integralen av $$$\frac{1}{g}$$$ är $$$\int{\frac{1}{g} d g} = \ln{\left(\left|{g}\right| \right)}$$$:
$$f_{1} \tan^{2}{\left(f \right)} {\color{red}{\int{\frac{1}{g} d g}}} = f_{1} \tan^{2}{\left(f \right)} {\color{red}{\ln{\left(\left|{g}\right| \right)}}}$$
Alltså,
$$\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g} = f_{1} \ln{\left(\left|{g}\right| \right)} \tan^{2}{\left(f \right)}$$
Lägg till integrationskonstanten:
$$\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g} = f_{1} \ln{\left(\left|{g}\right| \right)} \tan^{2}{\left(f \right)}+C$$
Svar
$$$\int \frac{f_{1} \tan^{2}{\left(f \right)}}{g}\, dg = f_{1} \ln\left(\left|{g}\right|\right) \tan^{2}{\left(f \right)} + C$$$A