Integral dari $$$\frac{f_{1} \tan^{2}{\left(f \right)}}{g}$$$ terhadap $$$g$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{f_{1} \tan^{2}{\left(f \right)}}{g}$$$ terhadap $$$g$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{f_{1} \tan^{2}{\left(f \right)}}{g}\, dg$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(g \right)}\, dg = c \int f{\left(g \right)}\, dg$$$ dengan $$$c=f_{1} \tan^{2}{\left(f \right)}$$$ dan $$$f{\left(g \right)} = \frac{1}{g}$$$:

$${\color{red}{\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g}}} = {\color{red}{f_{1} \tan^{2}{\left(f \right)} \int{\frac{1}{g} d g}}}$$

Integral dari $$$\frac{1}{g}$$$ adalah $$$\int{\frac{1}{g} d g} = \ln{\left(\left|{g}\right| \right)}$$$:

$$f_{1} \tan^{2}{\left(f \right)} {\color{red}{\int{\frac{1}{g} d g}}} = f_{1} \tan^{2}{\left(f \right)} {\color{red}{\ln{\left(\left|{g}\right| \right)}}}$$

Oleh karena itu,

$$\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g} = f_{1} \ln{\left(\left|{g}\right| \right)} \tan^{2}{\left(f \right)}$$

Tambahkan konstanta integrasi:

$$\int{\frac{f_{1} \tan^{2}{\left(f \right)}}{g} d g} = f_{1} \ln{\left(\left|{g}\right| \right)} \tan^{2}{\left(f \right)}+C$$

Jawaban

$$$\int \frac{f_{1} \tan^{2}{\left(f \right)}}{g}\, dg = f_{1} \ln\left(\left|{g}\right|\right) \tan^{2}{\left(f \right)} + C$$$A


Please try a new game Rotatly