Vector tangente unitario para $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$
Calculadoras relacionadas: Calculadora de vector normal unitario, Calculadora de vector binormal unitario
Tu entrada
Encuentre el vector tangente unitario de $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$.
Solución
Para hallar el vector tangente unitario, debemos calcular la derivada de $$$\mathbf{\vec{r}\left(t\right)}$$$ (el vector tangente) y luego normalizarla (encontrar el vector unitario).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 7, 2 t, 3 t^{2}\right\rangle$$$ (para los pasos, véase calculadora de derivadas).
Halla el vector unitario: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle$$$ (para los pasos, consulta calculadora de vector unitario).
Respuesta
El vector tangente unitario es $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle.$$$A