Unit tangent vector for $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$

The calculator will find the unit tangent vector to $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$, with steps shown.

Related calculators: Unit Normal Vector Calculator, Unit Binormal Vector Calculator

$$$\langle$$$ $$$\rangle$$$
Comma-separated.
Leave empty if you don't need the vector at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the unit tangent vector for $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$.

Solution

To find the unit tangent vector, we need to find the derivative of $$$\mathbf{\vec{r}\left(t\right)}$$$ (the tangent vector) and then normalize it (find the unit vector).

$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 7, 2 t, 3 t^{2}\right\rangle$$$ (for steps, see derivative calculator).

Find the unit vector: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle$$$ (for steps, see unit vector calculator).

Answer

The unit tangent vector is $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle.$$$A


Please try a new game Rotatly