Unit tangent vector for $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$
Related calculators: Unit Normal Vector Calculator, Unit Binormal Vector Calculator
Your Input
Find the unit tangent vector for $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$.
Solution
To find the unit tangent vector, we need to find the derivative of $$$\mathbf{\vec{r}\left(t\right)}$$$ (the tangent vector) and then normalize it (find the unit vector).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 7, 2 t, 3 t^{2}\right\rangle$$$ (for steps, see derivative calculator).
Find the unit vector: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle$$$ (for steps, see unit vector calculator).
Answer
The unit tangent vector is $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle.$$$A