Einheits-Tangentenvektor für $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$
Ähnliche Rechner: Einheitsnormalenvektor-Rechner, Rechner für den Einheits-Binormalenvektor
Ihre Eingabe
Bestimme den Einheits-Tangentenvektor zu $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$.
Lösung
Um den Einheits-Tangentvektor zu finden, müssen wir die Ableitung von $$$\mathbf{\vec{r}\left(t\right)}$$$ (dem Tangentenvektor) berechnen und ihn anschließend normalisieren (den Einheitsvektor bestimmen).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 7, 2 t, 3 t^{2}\right\rangle$$$ (für die Rechenschritte siehe Ableitungsrechner).
Bestimme den Einheitsvektor: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle$$$ (für die Schritte siehe Einheitsvektor-Rechner).
Antwort
Der Einheits-Tangentenvektor ist $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle.$$$A