Derivada de $$$x e^{- x}$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dx} \left(x e^{- x}\right)$$$.
Solución
Aplica la regla del producto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ con $$$f{\left(x \right)} = x$$$ y $$$g{\left(x \right)} = e^{- x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(x e^{- x}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) e^{- x} + x \frac{d}{dx} \left(e^{- x}\right)\right)}$$La función $$$e^{- x}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = e^{u}$$$ y $$$g{\left(x \right)} = - x$$$.
Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$x {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right)\right)} + e^{- x} \frac{d}{dx} \left(x\right) = x {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- x\right)\right)} + e^{- x} \frac{d}{dx} \left(x\right)$$La derivada de la función exponencial es $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$$x {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(x\right) = x {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(x\right)$$Volver a la variable original:
$$x e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(x\right) = x e^{{\color{red}\left(- x\right)}} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(x\right)$$Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$x e^{- x} \frac{d}{dx} \left(- x\right) + e^{- x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x e^{- x} \frac{d}{dx} \left(- x\right) + e^{- x} {\color{red}\left(1\right)}$$Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = -1$$$ y $$$f{\left(x \right)} = x$$$:
$$x e^{- x} {\color{red}\left(\frac{d}{dx} \left(- x\right)\right)} + e^{- x} = x e^{- x} {\color{red}\left(- \frac{d}{dx} \left(x\right)\right)} + e^{- x}$$Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- x e^{- x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + e^{- x} = - x e^{- x} {\color{red}\left(1\right)} + e^{- x}$$Simplificar:
$$- x e^{- x} + e^{- x} = \left(1 - x\right) e^{- x}$$Por lo tanto, $$$\frac{d}{dx} \left(x e^{- x}\right) = \left(1 - x\right) e^{- x}$$$.
Respuesta
$$$\frac{d}{dx} \left(x e^{- x}\right) = \left(1 - x\right) e^{- x}$$$A