Calculadora de diferenciación logarítmica

Calcula derivadas paso a paso usando logaritmos

La calculadora en línea calculará la derivada de cualquier función utilizando la diferenciación logarítmica, con los pasos que se muestran. Además, evaluará la derivada en el punto dado si es necesario.

Calculadora relacionada: Calculadora de derivados

Deje vacío para la detección automática.
Deje en blanco, si no necesita la derivada en un punto específico.

Si la calculadora no calculó algo o ha identificado un error, o tiene una sugerencia/comentario, escríbalo en los comentarios a continuación.

Tu aportación

Encuentra $$$\frac{d}{dx} \left(x^{\sin{\left(x \right)}}\right)$$$.

Solución

Sea $$$H{\left(x \right)} = x^{\sin{\left(x \right)}}$$$.

Toma el logaritmo de ambos lados: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{\sin{\left(x \right)}}\right)$$$.

Vuelve a escribir la RHS usando las propiedades de los logaritmos: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x\right) \sin{\left(x \right)}$$$.

Derive por separado ambos lados de la ecuación: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(\ln\left(x\right) \sin{\left(x \right)}\right)$$$.

Diferenciar el LHS de la ecuación.

La función $$$\ln\left(H{\left(x \right)}\right)$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \ln\left(u\right)$$$ y $$$g{\left(x \right)} = H{\left(x \right)}$$$.

Aplicar la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

La derivada del logaritmo natural es $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Vuelva a la variable anterior:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Por lo tanto, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Derive la RHS de la ecuación.

Aplique la regla del producto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ con $$$f{\left(x \right)} = \ln\left(x\right)$$$ y $$$g{\left(x \right)} = \sin{\left(x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right) \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right) \sin{\left(x \right)} + \ln\left(x\right) \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

La derivada del seno es $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$\ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \sin{\left(x \right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = \ln\left(x\right) {\color{red}\left(\cos{\left(x \right)}\right)} + \sin{\left(x \right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

La derivada del logaritmo natural es $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$\ln\left(x\right) \cos{\left(x \right)} + \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = \ln\left(x\right) \cos{\left(x \right)} + \sin{\left(x \right)} {\color{red}\left(\frac{1}{x}\right)}$$

Por lo tanto, $$$\frac{d}{dx} \left(\ln\left(x\right) \sin{\left(x \right)}\right) = \ln\left(x\right) \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}$$$.

Por lo tanto, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \ln\left(x\right) \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}$$$.

Por lo tanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\ln\left(x\right) \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}\right) H{\left(x \right)} = x^{\sin{\left(x \right)} - 1} \left(x \ln\left(x\right) \cos{\left(x \right)} + \sin{\left(x \right)}\right).$$$

Respuesta

$$$\frac{d}{dx} \left(x^{\sin{\left(x \right)}}\right) = x^{\sin{\left(x \right)} - 1} \left(x \ln\left(x\right) \cos{\left(x \right)} + \sin{\left(x \right)}\right)$$$A