Afgeleide van $$$x e^{- x}$$$

De rekenmachine vindt de afgeleide van $$$x e^{- x}$$$ en toont de stappen.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(x e^{- x}\right)$$$.

Oplossing

Pas de productregel $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe op $$$f{\left(x \right)} = x$$$ en $$$g{\left(x \right)} = e^{- x}$$$:

$${\color{red}\left(\frac{d}{dx} \left(x e^{- x}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) e^{- x} + x \frac{d}{dx} \left(e^{- x}\right)\right)}$$

De functie $$$e^{- x}$$$ is de samenstelling $$$f{\left(g{\left(x \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = e^{u}$$$ en $$$g{\left(x \right)} = - x$$$.

Pas de kettingregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe:

$$x {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right)\right)} + e^{- x} \frac{d}{dx} \left(x\right) = x {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- x\right)\right)} + e^{- x} \frac{d}{dx} \left(x\right)$$

De afgeleide van de exponentiële functie is $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:

$$x {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(x\right) = x {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(x\right)$$

Keer terug naar de oorspronkelijke variabele:

$$x e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(x\right) = x e^{{\color{red}\left(- x\right)}} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(x\right)$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$x e^{- x} \frac{d}{dx} \left(- x\right) + e^{- x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x e^{- x} \frac{d}{dx} \left(- x\right) + e^{- x} {\color{red}\left(1\right)}$$

Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = -1$$$ en $$$f{\left(x \right)} = x$$$:

$$x e^{- x} {\color{red}\left(\frac{d}{dx} \left(- x\right)\right)} + e^{- x} = x e^{- x} {\color{red}\left(- \frac{d}{dx} \left(x\right)\right)} + e^{- x}$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- x e^{- x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + e^{- x} = - x e^{- x} {\color{red}\left(1\right)} + e^{- x}$$

Vereenvoudig:

$$- x e^{- x} + e^{- x} = \left(1 - x\right) e^{- x}$$

Dus, $$$\frac{d}{dx} \left(x e^{- x}\right) = \left(1 - x\right) e^{- x}$$$.

Antwoord

$$$\frac{d}{dx} \left(x e^{- x}\right) = \left(1 - x\right) e^{- x}$$$A


Please try a new game Rotatly