Identifica la sección cónica $$$x^{2} = - 2 y^{2} + 4 y$$$
Calculadoras relacionadas: Calculadora de parábola, Calculadora de círculo, Calculadora de elipse, Calculadora de hipérbola
Tu entrada
Identifica y halla las propiedades de la sección cónica $$$x^{2} = - 2 y^{2} + 4 y$$$.
Solución
La ecuación general de una sección cónica es $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
En nuestro caso, $$$A = 1$$$, $$$B = 0$$$, $$$C = 2$$$, $$$D = 0$$$, $$$E = -4$$$, $$$F = 0$$$.
El discriminante de la sección cónica es $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = -16$$$.
A continuación, $$$B^{2} - 4 A C = -8$$$.
Dado que $$$B^{2} - 4 A C \lt 0$$$, la ecuación representa una elipse.
Para hallar sus propiedades, utilice la calculadora de elipse.
Respuesta
$$$x^{2} = - 2 y^{2} + 4 y$$$A representa una elipse.
Forma general: $$$x^{2} + 2 y^{2} - 4 y = 0$$$A.
Gráfica: consulte graphing calculator.