Μοναδιαίο διάνυσμα κατά τη διεύθυνση του $$$\left\langle \frac{1}{2} - \frac{\sqrt{5}}{2}, 1\right\rangle$$$
Η είσοδός σας
Βρείτε το μοναδιαίο διάνυσμα στη διεύθυνση του $$$\mathbf{\vec{u}} = \left\langle \frac{1}{2} - \frac{\sqrt{5}}{2}, 1\right\rangle$$$.
Λύση
Το μέτρο του διανύσματος είναι $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \frac{\sqrt{10 - 2 \sqrt{5}}}{2}$$$ (για τα βήματα, δείτε υπολογιστής μέτρου διανύσματος).
Το μοναδιαίο διάνυσμα προκύπτει διαιρώντας κάθε συνιστώσα του δοθέντος διανύσματος με το μέτρο του.
Επομένως, το μοναδιαίο διάνυσμα είναι $$$\mathbf{\vec{e}} = \left\langle \frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}}, \frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}}\right\rangle$$$ (για τα βήματα, δείτε υπολογιστής βαθμωτού πολλαπλασιασμού διανύσματος).
Απάντηση
Το μοναδιαίο διάνυσμα στη διεύθυνση του $$$\left\langle \frac{1}{2} - \frac{\sqrt{5}}{2}, 1\right\rangle$$$A είναι $$$\left\langle \frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}}, \frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}}\right\rangle\approx \left\langle -0.525731112119134, 0.85065080835204\right\rangle.$$$A