Προσδιορίστε την κωνική τομή $$$- 2 x y + 5 y^{2} - 2 = 0$$$

Ο υπολογιστής θα αναγνωρίσει και θα προσδιορίσει τις ιδιότητες της κωνικής τομής $$$- 2 x y + 5 y^{2} - 2 = 0$$$, με εμφάνιση βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής παραβολής, Υπολογιστής Κύκλου, Υπολογιστής έλλειψης, Υπολογιστής υπερβολής

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Αναγνωρίστε την κωνική τομή $$$- 2 x y + 5 y^{2} - 2 = 0$$$ και βρείτε τις ιδιότητές της.

Λύση

Η γενική εξίσωση μιας κωνικής τομής είναι $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.

Στην περίπτωσή μας, $$$A = 0$$$, $$$B = 2$$$, $$$C = -5$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = 2$$$.

Η διακρίνουσα της κωνικής τομής είναι $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = -8$$$.

Στη συνέχεια, $$$B^{2} - 4 A C = 4$$$.

Εφόσον $$$B^{2} - 4 A C \gt 0$$$, η εξίσωση παριστάνει υπερβολή.

Για να βρείτε τις ιδιότητές της, χρησιμοποιήστε τον υπολογιστή υπερβολής.

Απάντηση

$$$- 2 x y + 5 y^{2} - 2 = 0$$$A παριστάνει μια υπερβολή.

Γενική μορφή: $$$2 x y - 5 y^{2} + 2 = 0$$$A.

Γράφημα: δείτε το graphing calculator.


Please try a new game Rotatly